一本到无码AV专区无码不卡,久久久久久久久久久久久久久久久国产,亚洲一成人高清一区二区三区,欧美亚洲国产一区二区三区vr

當(dāng)前位置:*頁>>新聞資訊>>超聲波流量計和智能型氨水流量計在不同的環(huán)境下各有優(yōu)勢

超聲波流量計和智能型氨水流量計在不同的環(huán)境下各有優(yōu)勢

點擊次數(shù):2483 發(fā)布時間:2021-09-04 02:53:18
摘要:通過對超聲波流量計和智能型氨水流量計概論、工作原理、分類和工作性能區(qū)別的比較,揭示了中國現(xiàn)階段兩種*常用流量計的特征和不同優(yōu)勢。
1、超聲波流量計和智能型氨水流量計的概念
超聲波流量計是通過檢測流體流動對超聲束(或超聲脈沖)的作用以測量流量的儀表。超聲流量計和智能型氨水流量計一樣,因儀表流通通道未設(shè)置任何阻礙件,均屬無阻礙流量計,是適于解決流量測量困難問題的一類流量計,特別在大口徑流量測量方面有較突出的優(yōu)點,近年來它是發(fā)展迅速的一類流量計之一。
智能型氨水流量計是一種根據(jù)法拉*電磁感應(yīng)定律來測量管內(nèi)導(dǎo)電介質(zhì)體積流量的感應(yīng)式儀表,采用單片機嵌入式技術(shù),實現(xiàn)數(shù)字勵磁,同時在智能型氨水流量計上采用CAN現(xiàn)場總線。
2、超聲波流量計和智能型氨水流量計的工作原理
超聲波流量計由超聲波換能器、電子線路及流量顯示和累積系統(tǒng)三部分組成。超聲波發(fā)射換能器將電能轉(zhuǎn)換為超聲波能量,并將其發(fā)射到被測流體中,接收器接收到的超聲波信號,經(jīng)電子線路放大并轉(zhuǎn)換為代表流量的電信號供給顯示和積算儀表進行顯示和積算。這樣就實現(xiàn)了流量的檢測和顯示。超聲波流量計常用壓電換能器。它利用壓電材料的壓電效應(yīng),采用適出的發(fā)射電路把電能加到發(fā)射換能器的壓電元件上,使其產(chǎn)生超聲波振動。超聲波以某一角度射入流體中傳播,然后由接收換能器接收,并經(jīng)壓電元件變?yōu)殡娔?,以便檢測。發(fā)射換能器利用壓電元件的逆壓電效應(yīng),而接收換能器則是利用壓電效應(yīng)。智能型氨水流量計的工作原理是基于法拉*電磁感應(yīng)定律。在智能型氨水流量計中,測量管內(nèi)的導(dǎo)電介質(zhì)相當(dāng)于法拉*試驗中的導(dǎo)電金屬桿,上下兩端的兩個電磁線圈產(chǎn)生恒定磁場。當(dāng)有導(dǎo)電介質(zhì)流過時,則會產(chǎn)生感應(yīng)電壓。管道內(nèi)部的兩個電*測量產(chǎn)生的感應(yīng)電壓。測量管道通過不導(dǎo)電的內(nèi)襯(橡膠,特氟隆等)實現(xiàn)與流體和測量電*的電磁隔離。導(dǎo)電性液體在垂直于磁場的非磁性測量管內(nèi)流動,與流動方向垂直的方向上產(chǎn)生與流量成比例的感應(yīng)電勢,電動勢的方向按“弗來明右手規(guī)則”。
3、超聲波流量計和智能型氨水流量計的分類
根據(jù)檢測的方式,可分為傳播速度差法、多普勒法、波束偏移法、噪聲法及相關(guān)法等不同類型的超聲波流量計。根據(jù)對信號檢測的原理,目前超聲波流量計大致可分傳播速度差法(包括:直接時差法、時差法、相位差法、頻差法)波束偏移法、多普勒法、相關(guān)法、空間濾波法及噪聲法等類型。其中以噪聲法原理及結(jié)構(gòu)*簡單,便于測量和攜帶,價格便宜但準(zhǔn)確度較低,適于在流量測量準(zhǔn)確度要求不高的場合使用。
由于直接時差法、時差法、頻差法和相位差法的基本原理都是通過測量超聲波脈沖順流和逆流傳報時速度之差來反映流體的流速的,故又統(tǒng)稱為傳播速度差法。其中頻差法和時差法克服了聲速隨流體溫度變化帶來的誤差,準(zhǔn)確度較高,所以被廣泛采用。按照換能器的配置方法不同,傳播速度差撥又分為:Z法(透過法)、V法(反射法)、X法(交叉法)等。
智能型氨水流量計按激磁電流方式劃分,有直流激磁、交流(工頻或其他頻率)激磁、低頻矩形波激磁和雙頻矩形波激磁;按輸出信號連接和激磁(或電源)連線的制式分類,有四線制和二線制;按轉(zhuǎn)換器與傳感器組裝方式分類,有分體型和一體型;按流量傳感器與管道連接方式分類,有法蘭型、夾持型、衛(wèi)生型、插入型、螺紋連接;按流量傳感器電*是否與被測液體接觸分類,有接觸型和非接觸型;按流量傳感器結(jié)構(gòu)分類,有短管型和插入型(插入式智能型氨水流量計);按用途分類,有通用型、防爆型、衛(wèi)生型、防侵水型和用于明渠流量測量的潛水型(明渠流量計)。
4、超聲波流量計和智能型氨水流量計的主要區(qū)別
4.1介質(zhì)不同
超聲波流量計的流量測量準(zhǔn)確度幾乎不受被測流體溫度、壓力、粘度、密度等參數(shù)的影響,又可制成非接觸及便攜式測量儀表,故可解決其它類型儀表所難以測量的強腐蝕性、非導(dǎo)電性、放射性及易燃易爆介質(zhì)的流量測量問題。
智能型氨水流量計不能測量導(dǎo)電率很低的液體,如石石油制品和有機溶劑等。通用型智能型氨水流量計由于里襯材料限制,不能測量溫度較高液體。智能型氨水流量計是通過測量導(dǎo)電液體的速度確定工作狀態(tài)下的體積流量。按照計量要求,對于液態(tài)介質(zhì),應(yīng)測量質(zhì)量流量,測量介質(zhì)流量應(yīng)涉及到流體的密度,不同流體介質(zhì)具有不同的密度,而且隨溫度變化。如果智能型氨水流量計轉(zhuǎn)換器不考慮流體密度,僅給出常溫狀態(tài)下的體積流量是不合適的。
4.2準(zhǔn)確度不同
超聲波流量計是通過測量流體速度來確定體積流量,對液體應(yīng)該測量它的質(zhì)量流量,儀表測量質(zhì)量流量是通過體積流量乘以人為設(shè)定的密度后得到的,當(dāng)流體溫度變化時,流體密度是變化的,人為設(shè)定密度值,不能保證質(zhì)量流量的準(zhǔn)確度。只能在測量流體速度的同時,又測量了流體密度,才能通過運算,得到真實質(zhì)量流量值。
從超聲波流量計在國內(nèi)市場使用的經(jīng)驗來看,目前所存在的缺點主要是可測流體的溫度范圍受超聲波換能鋁和換能器與管道之間的耦合材料耐溫程度的限制,另外不足的是高溫下被測流體傳聲速度的原始數(shù)據(jù)不全。目前中國的超聲波流量計只能用于測量200℃以下的流體。
超聲波流量計和智能型氨水流量計的測量媒介不同,超聲波是采用聲波,頻率很低,超聲波頻率20KHz~100KHz,雷達是采用2.4GHz級別的電磁波,超聲波的限制性比較大,很容易受到其它鐵制物體的干擾,另外頻率低,衰減大,測量范圍小,應(yīng)用的面比較窄,常用在大口徑的水管線的流量測量和明渠類流量計測液位來換算成流量。也有用在固體料倉上的。電磁的頻率高,衰減小,如果加上導(dǎo)波管測量范圍可以很大,用在儲罐上比較多。但是需要注意介電常數(shù),介電常數(shù)太小的介質(zhì)沒法測或測量范圍很小。由于這種傳感器必須保持管道內(nèi)電阻和測量電路阻抗之間有一定比例關(guān)系,因此在制造上有一定困難。當(dāng)被測介質(zhì)的電導(dǎo)率約為10Ω/cm時就開始產(chǎn)生困難,電導(dǎo)率更低時就產(chǎn)生原理性困難。 當(dāng)電導(dǎo)率為10Ω/cm時,就達到導(dǎo)電介質(zhì)和電介質(zhì)之間的“分界線”,熱噪聲電平隨內(nèi)阻的增大而顯著增加。
高精度超聲流量計均為多聲道或管段式,中、小口徑管段式超聲流量計通常都做實流標(biāo)定,具有0.5%準(zhǔn)確度。目前廣泛使用的國產(chǎn)單聲道超聲流量標(biāo)稱精度為1%,但在實際應(yīng)用中,由于現(xiàn)場管道的內(nèi)徑、壁厚、 圓度都無法精確測量等諸多因素會使測量準(zhǔn)確度超出標(biāo)稱準(zhǔn)確度許多,對供水行業(yè)的計量來說,超聲波流量計的實際測量誤差能控制在3%以內(nèi)就算高準(zhǔn)確度了。
4.3安裝、維護、檢定成本不同
超聲波流量計適用于大型圓形管道和矩形管道,且原理上不受管徑限制,其造價基本上與管徑無關(guān)。對于大型管道不僅帶來方便,可認為在無法實現(xiàn)實流校驗的情況下是優(yōu)先考慮的選擇方案。超聲流量計可作非接觸測量。夾裝式換能器超聲流量計可無需停流截管安裝,只要在既設(shè)管道外部安裝換能器即可。這是超聲流量計在工業(yè)用流量儀表中具有的獨特優(yōu)點,因此可作移動性(即非定點固定安裝)測量,適用于管網(wǎng)流動狀況評估測定超聲流量計為無流動阻撓測量,無額外壓力損失。流量計的儀表系數(shù)是可從實際測量管道及聲道等幾何尺寸計算求得的,既可采用干法標(biāo)定,除帶測量管段式外一般不需作實流校驗。超聲波流量計主要是管外安裝和插入式安裝,簡單方便,可在線拆卸,維護時不需要工藝停車,不影響生產(chǎn),檢定費用低,按**計量檢定規(guī)程每3年檢定一次。
智能型氨水流量計的安裝與調(diào)試比其它流量計復(fù)雜,且要求更嚴(yán)格。變送器和轉(zhuǎn)換器必須配套使用,兩者之間不能用兩種不同型號的儀表配用。在安裝變送器時,從安裝地點的選擇到具體的安裝調(diào)試,必須嚴(yán)格按照產(chǎn)品說明書要求進行。安裝地點不能有振動,不能有強磁場。在安裝時必須使變送器和管道有良好的接觸及良好的接地。變送器的電位與被測流體等電位。在使用時,必須排盡測量管中存留的氣體,否則會造成較大的測量誤差。智能型氨水流量計需要在有電導(dǎo)率的液體條件下安裝,而且一般智能型氨水流量計的安裝必須截管安裝,但是智能型氨水流量計的特點是在符合條件的現(xiàn)場條件下準(zhǔn)確度高。智能型氨水流量計拆卸麻煩,必須要求工藝停車,拆卸送檢麻煩,如果是0.5%準(zhǔn)確度按**計量檢定規(guī)程每半年需檢定一次。
4.4干擾來源不同
干擾了超聲波工作,就是干擾了超聲波流量計工作。干擾超聲波工作的主要因素有溫度的劇烈變化和雜波的干擾,或管道內(nèi)有特定角度的旋流或者結(jié)構(gòu)使得流量計發(fā)射出的超聲波不能有效的回收。
電化學(xué)*化電勢干擾是由于電*感生電動勢在兩**性不同而導(dǎo)致電解質(zhì)在電*表面*化產(chǎn)生。雖然采用正負交變勵磁磁場能顯著減弱*化電勢的數(shù)量級,但不能根本上完全消除*化電勢干擾。其特性于流體介質(zhì)的性質(zhì)、電*材料性質(zhì)、電*的外形尺寸形狀有關(guān),具有變化緩慢,數(shù)量級不大等特點。因此選擇合適的電*材料,設(shè)計*佳的電*形狀的尺寸是減小*化電勢的有效方法之一。另外采用正負兩*性交變的矩形波勵磁技術(shù)配合微處理器同步寬脈沖采樣技術(shù),到用微處理器運算功能前后兩次采樣值相減消除流量信號電勢中的*化電勢干擾。
工頻干擾噪聲是由電磁流量傳感器勵磁繞組和流體、電*、放大器輸入回路的電磁耦合,另外智能型氨水流量計工作現(xiàn)場的工頻共模干擾,其三供電電源引入的工頻串模干擾等,其產(chǎn)生的物理機理均是電磁感應(yīng)原理。*先就電磁流量傳感器勵磁繞組和流體、電*、放大器輸入回路的電磁耦合產(chǎn)生的工頻干擾對智能型氨水流量計工作影響*大,而且在不同的勵磁技術(shù)下其表現(xiàn)的形態(tài)、特性不同,因而采取抗干擾措施也不同。解決智能型氨水流量計運行中出現(xiàn)的問題,可采用新型HCMOS系列芯片技術(shù)和微處理器系統(tǒng)電源電壓監(jiān)視技術(shù)。
5、結(jié)語
綜合以上論述,超聲波流量計和智能型氨水流量計在不同的環(huán)境下各有優(yōu)勢。在小成本作業(yè),對測量準(zhǔn)確度要求不高的情況下,宜多使用超聲波流量計;在安裝、維護資金充足,對測量準(zhǔn)確度要求高的情況下,應(yīng)多采用智能型氨水流量計。當(dāng)然,計量檢測人員要認真考察工作環(huán)境中對流量計的干擾來源,并采取有效的抗干擾措施。

上一篇:關(guān)于脫硝氨水流量計的應(yīng)用及優(yōu)缺點

下一篇:測氨水流量計在熱鉀堿溶液測量中的安裝與使用

相關(guān)文章

  • 超聲波流量計在線校準(zhǔn)方法
  • 超聲波流量計出現(xiàn)負值的原因與處理
  • 超聲波流量計波動的原因
  • 超聲波流量計維護保養(yǎng)方法
  • 提高氣體超聲波流量計測量精度有效措施
  • 氣體超聲波流量計測量原理
  • 氣體超聲波流量計的選型
  • 氣體超聲波流量計的優(yōu)缺點分析
  • 氣體超聲波流量計技術(shù)特點
  • 影響氣體超聲波流量計測量精度的因素有哪些
  • 氣體超聲波流量計在天然氣計量中的應(yīng)用
  • 氣體超聲波流量計安裝要求
  • 超聲波流量計和測量膠水計量表在不同的環(huán)境下各有優(yōu)勢
  • 超聲波流量計和智能型氨水流量計在不同的環(huán)境下各有優(yōu)勢
  • 超聲波流量計和高位消防水箱出水流量計在不同的環(huán)境下各有優(yōu)勢
  • 關(guān)于超聲波流量計產(chǎn)品特點有哪些
  • 超聲波流量計的測量原理及結(jié)構(gòu)
  • 超聲波流量計的測量原理包括哪些方面
  • 超聲波流量計優(yōu)缺點具體有哪些方面
  • 超聲波流量計多普勒測量原理
  • 關(guān)于串接式超聲波流量計基本概述
  • 超聲波流量計對氣體測量的應(yīng)用
  • 超聲波流量計規(guī)格參數(shù)
  • 外夾式超聲波流量計的安裝注意事項
  • 適合于封閉管道污水流量測量的超聲波流量計
  • 超聲波流量計在腈綸廠污水處理裝置的應(yīng)用
  • 超聲波流量計安裝要求有哪些方面
  • 超聲波流量計的性能特點及應(yīng)用范圍
  • 超聲波流量計的生產(chǎn)廠家
  • 超聲波流量計的應(yīng)用范圍
  • | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |